Древние
греки наблюдали электрические явления задолго до начала изучения
электричества. Достаточно потереть шерстью или мехом полудрагоценный
камень янтарь, как он начинает притягивать кусочки сухой соломы, бумаги
или пух и перья. В
современных школьных опытах используются стеклянные и эбонитовые
стержни натертые шелком или шерстью. При этом считается, что на
стеклянном стержне сохраняется положительный заряд, а на эбонитовом
отрицательный. Эти стержни также могут притягивать к себе мелкие кусочки
бумаги …
Древние греки наблюдали электрические явления задолго до начала изучения электричества. Достаточно потереть шерстью или мехом полудрагоценный камень янтарь, как он начинает притягивать кусочки сухой соломы, бумаги или пух и перья.
В современных школьных опытах используются стеклянные и эбонитовые стержни натертые шелком или шерстью. При этом считается, что на стеклянном стержне сохраняется положительный заряд, а на эбонитовом отрицательный. Эти стержни также могут притягивать к себе мелкие кусочки бумаги и т.п. мелкие предметы. Именно это притяжение и есть воздействие электрического поля, которое изучал Шарль Кулон.
По-гречески янтарь называется электрон, поэтому для описания такой силы притяжения Уильям Гильберт (1540 – 1603 гг.) предложил термин «электрический».
В 1891 году английский ученый Стоней Джордж Джонстон выдвинул гипотезу о существовании в веществах электрических частиц, которые и назвал электронами. Такое утверждение существенно облегчило понимание электрических процессов в проводниках.
Электроны в металлах достаточно свободны и легко отрываются от своих атомов, а под действием электрического поля, точнее разности потенциалов перемещаются между атомами металла, создавая электрический ток. Таким образом, электрический ток в медном проводе представляет собой поток электронов, протекающий вдоль провода, от одного конца к другому.
Электрический ток способны проводить не только металлы. При определенных условиях электропроводны жидкости, газы и полупроводники. В этих средах носителями зарядов являются ионы, электроны и дырки. Но пока речь только о металлах, ведь даже и в них все не так просто.
Пока что речь идет о постоянном токе, направление и величина которого не меняется. Поэтому на электрических схемах возможно стрелками указать, куда же течет ток. Считается, что ток течет от положительного полюса к отрицательному, к такому выводу пришли на ранней стадии изучения электричества.
Позднее выяснилось, что на самом деле электроны движутся как раз в обратном направлении – от минуса к плюсу. Но, тем не менее, от «ошибочного» направления не отказались, более того именно оно называется техническим направлением тока. Какая разница, если лампочка все равно горит. Направление движения электронов получило название истинного и применяется чаще всего в научных исследованиях.
Сказанное иллюстрирует рисунок 1.
Рисунок 1.
Если переключатель на некоторое время «перебросить» в сторону батарейки, то зарядится электролитический конденсатор C, на нем накопится некоторый заряд. После того, как конденсатор зарядился, переключатель повернули в сторону лампочки. Лампа вспыхнула и погасла – конденсатор разрядился. Совершенно очевидно, что длительность вспышки зависит от величины электрического заряда, запасенного в конденсаторе.
Гальваническая батарея тоже хранит электрический заряд, но намного больший, нежели конденсатор. Поэтому время вспышки достаточно велико, — лампочка может гореть до нескольких часов.
Электрический заряд, ток, сопротивление и напряжение
Изучением электрических зарядов занимался французский ученый Ш. Кулон, который в 1785 году открыл закон, названный его именем.
В формулах электрический заряд обозначается как Q или q. Физический смысл этой величины — способность заряженных тел вступать в электромагнитные взаимодействия: одноименные заряды отталкиваются, разноименные притягиваются. Сила взаимодействия между зарядами прямо пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними. Если в виде формулы, то это выглядит вот так:
F=q1*q2/r2
Электрический заряд электрона очень мал, поэтому на практике пользуются величиной заряда под названием Кулон. Именно эта величина используется в международной системе СИ (Кл). В одном кулоне содержится ни много ни мало 6,24151*1018 (десять в восемнадцатой степени) электронов. Если из этого заряда выпускать по 1 млн. электронов в секунду, то этот процесс продлится целых 200 тысяч лет!
За единицу измерения тока в системе СИ принят Ампер (А), по имени французского ученого Андре Мари Ампера (1775 — 1836). При силе тока в 1А через поперечное сечение проводника за 1 секунду протекает заряд ровно в 1 Кл. Математическая формула в этом случае получается вот такая: I = Q/t.
В этой формуле ток в Амперах, заряд в Кулонах, время в секундах. Все единицы должны соответствовать системе СИ.
Другими словами получается один кулон в секунду. Очень напоминает скорость автомобиля в километрах в час. Поэтому сила электрического тока есть не что иное, как скорость протекания электрического заряда.
Чаще в быту используется внесистемная единица Ампер*час. Достаточно вспомнить автомобильные аккумуляторы, емкость которых указывается как раз в ампер часах. И это всем известно и понятно, хотя про какие-то кулоны в магазинах авто запчастей никто и не вспоминает. Но при этом все-таки существует соотношение: 1 Кл = 1*/3600 ампер*часа. Возможно, что такое количество можно было бы назвать ампер * секундой.
По-другому определению ток в 1 А протекает в проводнике сопротивлением 1 Ом при разности потенциалов (напряжении) на концах проводника 1 В. Соотношение между этими величинами определяется по закону Ома. Это, пожалуй, самый главный электрический закон, недаром народная мудрость гласит: «Не знаешь закон Ома – сиди дома!».
Проверка закона Ома
Этот закон сейчас известен всем: «Ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению». Казалось бы всего три буквы, — I = U/R, любой школьник скажет: «Ну и что?». А на самом деле путь к этой короткой формуле был достаточно тернист и долог.
Для проверки закона Ома можно собрать простейшую схему, показанную на рисунке 2.
Рисунок 2.
Исследование достаточно простое, — увеличивая напряжение источника питания по точкам на бумаге построить график, показанный на рисунке 3.
Рисунок 3.
Казалось бы, что график должен получиться идеально прямой линией, поскольку зависимость I = U/R можно представить в виде U = I*R, а в математике это прямая линия. На самом же деле в правой части линия загибается вниз. Может не очень сильно, но загибается и почему-то весьма разнообразно. При этом загиб будет зависеть от того, как будет нагреваться исследуемое сопротивление. Не зря оно сделано из длинной медной проволоки: можно намотать плотно виток к витку, можно закрыть слоем асбеста, может температура в помещении сегодня одна, а вчера была другая или в помещении гуляет сквозняк.
Это к тому, что температура влияет на сопротивление так же, как на линейные размеры физических тел при нагревании. Каждый металл имеет свой температурный коэффициент сопротивления (ТКС). Вот только про расширение знают и помнят практически все, а про изменение электрических свойств (сопротивление, емкость, индуктивность) забывают. А ведь именно температура в этих опытах является самым стабильным источником нестабильности.
С литературной точки зрения получилась достаточно красивая тавтология, но именно она в данном случае очень точно выражает суть проблемы.
Многие ученые в середине девятнадцатого века пытались открыть эту зависимость, но мешала нестабильность опытов, вызывала сомнения в истинности полученных результатов. Удалось это сделать только Георгу Симону Ому (1787-1854), который сумел отбросить все побочные эффекты или, как говорится, увидеть за деревьями лес. Единица измерения сопротивления 1Ом до сих пор носит имя этого гениального ученого.
Из закона Ома можно выразить любую составляющую: I=U/R, U=I*R, R=U/I.
Для того, чтобы эти соотношения не забывать существует так называемый треугольник Ома, или что-то в этом роде, показанный на рисунке 4.
Рисунок 4. Треугольник Ома
Пользоваться им очень просто: достаточно закрыть пальцем искомую величину и две оставшиеся буквы покажут, что с ними надо делать.
Еще осталось вспомнить, какую роль играет во всех этих формулах напряжение, каков его физический смысл. Обычно под напряжением понимается разность потенциалов в двух точках электрического поля. Чтобы это было легче понять, пользуются аналогиями, как правило, с баком, водой и трубами.
В этой «водопроводной» схеме расход воды в трубе (литры/сек) это как раз есть ток (кулон/сек), а разность между верхним уровнем в баке и открытым краном разность потенциалов (напряжение). При этом если кран открыт, то давление на выходе равно атмосферному, которое можно принять за условный нулевой уровень.
В электрических схемах такая условность позволяет принять какую-то точку за общий провод («землю»), относительно которого производятся все измерения и настройки. Чаще всего за этот провод принимают минусовой вывод источника питания, хотя это и не всегда так.
Разность потенциалов измеряется в вольтах (В) по имени итальянского физика Алессандро Вольта (1745-1827). По современному определению при разности потенциалов в 1 В на перемещение заряда в 1 Кл расходуется энергия в 1 Дж. Пополнение израсходованной энергии производится от источника питания, по аналогии с «водопроводной» схемой это будет насос, поддерживающий уровень воды в баке.