Основное назначение
следящих приводов:
слежение за вводимым в систему сигналом управления, изменяющимся по
заранее неизвестному закону.
Следящие приводы составляют большую группу приводов, используемых в
промышленности. Наиболее распространенным случаем является отработка
движения некоторого входного вала выходным валом привода. При этом
повторение движения выходным валом должно осуществляться с требуемой
ошибкой. В
следящих приводах регулируемой величиной обычно является угол поворота …
Основное назначение следящих приводов: слежение за вводимым в систему сигналом управления, изменяющимся по заранее неизвестному закону. Следящие приводы составляют большую группу приводов, используемых в промышленности. Наиболее распространенным случаем является отработка движения некоторого входного вала выходным валом привода. При этом повторение движения выходным валом должно осуществляться с требуемой ошибкой. В следящих приводах регулируемой величиной обычно является угол поворота , а само регулирование — регулированием по положению.
Функциональная схема следящего привода, приведенная на рис. 1, имеет замкнутую структуру с жесткой отрицательной обратной связью по углу поворота 2 выходного вала.
Рис. 1. Функциональная схема следящего привода
Принцип действия следящего привода следующий. Предположим, что между углом 1 входного вала и 2 выходного вала появилось некоторое рассогласование, т. е. 1 не равно 2. Датчики Д1 и Д2 формируют напряжения, пропорциональные углам поворота, и выдают на вход преобразователя П напряжение управления Uy = U1-U2, где U1 = k11, U2 = k22. Поэтому датчики Д1 и Д2 обычно называют измерителями рассогласования. Преобразователь П преобразует Uy в пропорциональный сигнал управления двигателем, которым может быть напряжение подаваемое на якорь.
Напряжение Uy формируется такого знака, чтобы двигатель Д, получив питание, стал поворачивать свой вал в направлении, при котором разность углов 2-1 уменьшалась. Иными словами, следящий привод всегда стремится к непрерывному автоматическому устранению рассогласования между входным и выходным валами.
В качестве измерителя рассогласования в следящем приводе применяют потенциометрический измеритель, сельсин, работающий в трансформаторном режиме, вращающийся трансформатор и др., в качестве устройства преобразователь — двигатель системы Г—Д, ЭМУ-Д, МУ-Д, УВ-Д и др.
Структурная схема простейшей следящей системы, показанная на рис. 2, состоит из сельсина датчика СД, сельсина приемника СП, которые работают в трансформаторном режиме и выполняют функции датчиков Д1 и Д2, т. е. измерителя рассогласования входного угла 1 и выходного 2.
Сельсины — это электрические микромашины переменного тока, обладающие способностью самосинхронизации. Их применяют в дистанционных системах передачи угла в качестве датчиков и приемников. Передача угловой величины в такой системе происходит синхронно, синфазно и плавно. При этом между устройством, задающим угол (датчиком), и устройством, принимающим передаваемую величину (приемником), существуют только электрическое соединение в виде линии связи.
Рис. 2. Схема следящего привода с сельсинами
Рис. 3. Сельсины
В систему включается преобразователь, который выпрямляет переменное напряжение однофазной обмотки СП и усиливает его. Преобразователь (см. рис. 2) должен быть знакочувствительным, т. е. в зависимости от фазы сигнала обмотки СП выдавать на якорь двигателя постоянное напряжение положительного или отрицательного знака.
Исполнительный двигатель связан с ротором СП через понижающий редуктор Р. Входной задающий угол поворота 1 вводится в систему задающим устройством ЗУ, вал которого связан неподвижно с валом СД. Иногда эта связь осуществляется через редуктор.
Если ЗУ переместит вал СД от его исходного положения в положение угла 1, на выходе однофазной обмотки СП появится переменное напряжение, амплитуда которого пропорциональна разности входного и выходного углов привода Uy = U1 = k1(1-2).
Частота напряжения Uy определяется частотой питания однофазной обмотки СД (50, 400 Гц и т. д.). Преобразователь П выпрямляет и усиливает напряжение Uy.
Схемно он может быть представлен фазочувствительным выпрямителем и усилителем постоянного тока, выполненным на различной элементной базе. Например, в качестве выпрямителя может быть использован транзисторный усилитель, а в качестве усилителя — ЭМУ.
Электрический двигатель, получив питание в виде