Линии электросетей обладают активными и индуктивными сопротивлениями и активными и емкостными проводимостями, равномерно распределенными по их длине. В практических электрических расчетах электросетей принято равномерно распределенные постоянные линии заменять сосредоточенными постоянными: активным и индуктивным сопротивлениями и активной и емкостной проводимостями. При расчетах местных электросетей напряжением 35 кв и ниже проводимости g и b можно не учитывать и применять более простую схему замещения, состоящую из …
Линии электросетей обладают активными и индуктивными сопротивлениями и активными и емкостными проводимостями, равномерно распределенными по их длине.
В практических электрических расчетах электросетей принято равномерно распределенные постоянные линии заменять сосредоточенными постоянными: активным r и индуктивным х сопротивлениями и активной g и емкостной b проводимостями. Соответствующая этому условию П-образная схема замещения линии приведена на рис. 1,а.
При расчетах местных электросетей напряжением 35 кв и ниже проводимости g и b можно не учитывать и применять более простую схему замещения, состоящую из последовательно соединенных активного и индуктивного сопротивлений (рис. 1,б).
Активное сопротивление линии определяют по формуле
где l— длина провода, м; s — сечение провода или жилы кабеля, ммг — удельная расчетная проводимость материала, м/ом-мм2.
Рис. 1. Схемы замещения линий: а — для районных электросетей; б — для местных электросетей.
Среднее расчетное значение удельной проводимости при температуре 20° С для однопроволочных и многопроволочных проводов с учетом их фактического сечения и увеличения длины при скрутке многопроволочных проводов равно для меди 53 м/оммм2, для алюминия 32 м/оммм2.
Активное сопротивление стальных проводов непостоянно. При увеличении тока по проводу возрастает поверхностный эффект, а следовательно, увеличивается активное сопротивление провода. Активное сопротивление стальных проводов определяют по экспериментальным кривым или таблицам в зависимости от величины протекающего по ним тока.
Индуктивное сопротивление линии. Если линия трехфазного тока выполнена с перестановкой (транспозицией) проводов, то при частоте 50 гц индуктивное сопротивление фазы на 1 км длины линии можно Определить по формуле
где: аср – среднее геометрическое расстояние между осями проводов
а1, а2 и а3 — расстояния между осями проводов разных фаз, d — наружный диаметр проводов, принимаемый по таблицам ГОСТ на провода; — относительная магнитная проницаемость металла провода; для проводов из цветного металла =1; х’0 — внешнее индуктивное сопротивление линии, обусловленное магнитным потоком вне провода; х»0 — внутреннее индуктивное сопротивление линии, обусловленное магнитным потоком, замыкающимся внутри провода.
Индуктивное сопротивление линии длиной l км
Индуктивные сопротивления х0 воздушных линий с проводами из цветного металла составляют в среднем 0,33—0,42 ом/км.
Линии напряжением 330—500 кв для снижения потерь на корону (см. ниже) выполняют не одним многопроволочным проводом большого диаметра, а двумя-тремя сталеалюминиевыми проводами на фазу, расположенными на небольшом расстоянии друг от друга. При этом индуктивное сопротивление линии существенно снижается. На рис. 2 показано подобное выполнение фазы линии 500 кв, где три провода расположены по вершинам равностороннего треугольника со сторонами 40 см. Провода фазы скреплены несколькими жесткими растяжками в пролете.
Применение нескольких проводов на фазу эквивалентно увеличению диаметра провода, что ведет к уменьшению индуктивного сопротивления линии. Последнее можно подсчитать по второй формуле, разделив второй член ее правой части на п и подставив вместо наружного диаметра d провода эквивалентный диаметр dэ определенный по формуле
где n — число проводов в одной фазе линии; асp—среднее геометрическое расстояние между проводами одной фазы.
При двух проводах на фазу индуктивное сопротивление линии снижается примерно на 15—20%, а при трех проводах—на 25—30%.
<