Генераторы постоянного тока

Генераторы постоянного токаРабота
генератора основана на использовании закона электромагнитной индукции,
согласно которому в проводнике, движущемся в магнитном поле и
пересекающем магнитный поток, индуцируется э д. с. Одной
из основных частей машины постоянного тока является магнитопровод, по
которому замыкается магнитный поток. Магнитная цепь машины постоянного
тока состоит из неподвижной части — статора и вращающейся
части — ротора. Статор представляет собой стальной корпус, к которому
крепятся другие детали машины, в том числе магнитные полюсы …

Принцип действия генератора постоянного тока


Генераторы постоянного токаРабота генератора основана на использовании закона электромагнитной индукции, согласно которому в проводнике, движущемся в магнитном поле и пересекающем магнитный поток, индуцируется э д. с.

Одной из основных частей машины постоянного тока является магнитопровод, по которому замыкается магнитный поток. Магнитная цепь машины постоянного тока (рис. 1) состоит из неподвижной части — статора 1 и вращающейся части — ротора 4. Статор представляет собой стальной корпус, к которому крепятся другие детали машины, в том числе магнитные полюсы 2. На магнитные полюсы насаживается обмотка возбуждения 3, питаемая постоянным током и создающая основной магнитный поток Ф0.


Магнитная цепь машины постоянного тока с четырьмя полюсами

Рис. 1. Магнитная цепь машины постоянного тока с четырьмя полюсами


Листы, из которых набирают магнитную цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Рис. 2. Листы, из которых набирают магнитную цепь ротора: а — с открытыми пазами, б — с полузакрытыми пазами

Ротор машины набирают из стальных штампованных листов с пазами по окружности и с отверстиями для вала и вентиляции (рис. 2). В пазы (5 на рис. 1) ротора закладывается рабочая обмотка машины постоянного тока, т. е. обмотка, в которой основным магнитным потоком индуцируется э. д. с. Эту обмотку называют обмоткой якоря (поэтому ротор машины постоянного тока принято называть якорем).

Значение э. д. с. генератора постоянного тока может изменяться, но ее полярность остается постоянной. Принцип действия генератора постоянного тока показан на рис. 3.

Полюсы постоянного магнита создают магнитный поток. Представим, что обмотка якоря состоит из одного витка, концы которого присоединены к различным полукольцам, изолированным друг от друга. Эти полукольца образуют коллектор, который вращается вместе с витком обмотки якоря. По коллектору при этом скользят неподвижные щетки.

При вращении витка в магнитном поле в нем индуцируется э. д. с


где В — магнитная индукция, l — длина проводника, v — его линейная скорость.

Когда плоскость витка совпадает с плоскостью осевой линии полюсов (виток расположен вертикально), проводники пересекают максимальный магнитный поток и в них индуцируется максимальное значение э. д. с. Когда виток занимает горизонтальное положение, э. д. с. в проводниках равна нулю.

Направление э. д. с. в проводнике определяется по правилу правой руки (на рис. 3 оно показано стрелками). Когда при вращении витка проводник переходит под другой полюс, направление э. д. с. в нем меняется на обратное. Но так как вместе с витком вращается коллектор, а щетки неподвижны, то с верхней щеткой всегда соединен проводник, находящийся под северным полюсом, э. д. с. которого направлена от щетки. В результате полярность щеток остается неизменной, а следовательно, остается неизменной по направлению э. д. с. на щетках — ещ (рис. 4).


Простейший генератор постоянного тока

Рис. 3. Простейший генератор постоянного тока


Изменение во времени э.д.с. простейшего генератора постоянного тока

Рис. 4. Изменение во времени э.д.с. простейшего генератора постоянного тока

Хотя э. д. с. простейшего генератора постоянного тока постоянна по направлению, по значению она изменяется, принимая за один оборот витка два раза максимальное и два раза нулевое значения. Э. д. с. с такой большой пульсацией непригодна для большинства приемников постоянного тока и в строгом смысле слова ее нельзя назвать постоянной.

Для уменьшения пульсаций обмотку якоря генератора постоянного тока выполняют из большого числа витков (катушек), а коллектор — из большого числа коллекторных пластин, изолированных друг от друга.


Генератор постоянного тока

Рассмотрим процесс сглаживания пульсаций на примере обмотки кольцевого якоря (рис. 5), состоящей из четырех катушек (1, 2, 3, 4), по два витка в каждой. Якорь вращается по направлению часовой стрелки с частотой n и в проводниках обмотки якоря, расположенных на внешней стороне якоря, индуцируется э. д. с. (направление показано стрелками).

Обмотка якоря представляет собой замкнутую цепь, состоящую из последовательно соединенных витков. Но относительно щеток обмотка якоря представляет собой две параллельные ветви. На рис. 5, а одна параллельная ветвь состоит из катушки 2, вторая — из катушки 4 (в катушках 1 и 3 э. д. с. не индуцируется, и они обеими концами соединены с одной щеткой). На рис. 5, б якорь показан в положении, которое он занимает через 1/8 оборота. В этом положении одна параллельная ветвь обмотки якоря состоит из последовательно включенных катушек 1 и 2, а вторая — из последовательно включенных катушек 3 и 4.


Схема простейшего генератора постоянного тока с кольцевым якорем

Рис. 5. Схема простейшего генератора постоянного тока с кольцевым якорем

Каждая катушка при вращении якоря по отношению к щеткам имеет постоянную полярность. Изменение э. д. с. катушек во времени при вращении якоря показано на рис. 6, а. Э. д. с. на щетках равна э. д. с. каждой параллельной ветви обмотки якоря. Из рис. 5 видно, что э. д. с. параллельной ветви равна или э. д. с. одной катушки, или сумме э. д. с. двух соседних катушек:


В результате этого пульсации э. д. с. обмотки якоря заметно уменьшаются (рис. 6, б). При увеличении числа витков и коллекторных пластин можно получить практически постоянную э. д. с. обмотки якоря.


Небольшой генератор

Конструкция генераторов постоянного тока

В процессе технического прогресса в электромашиностроении конструктивный вид машин постоянного тока изменяется, хотя основные детали остаются теми же.

Рассмотрим устройство одного из типов машин постоянного тока, выпускаемых промышленностью. Как указывалось, основными частями машины являются статор и якорь. Статор 6 (рис 7), изготовленный в виде стального цилиндра, служит как для крепления других деталей, так и для защиты от механических повреждений и является неподвижной частью магнитной цепи.

К статору крепятся магнитные полюсы 4, которые могут представлять собой постоянные магниты (у машин малой мощности) или электромагниты. В последнем случае на полюсы насаживается обмотка возбуждения 5, питаемая постоянным током и создающая неподвижный относительно статора магнитный поток.

При большом числе полюсов их обмотки включают параллельно или последовательно, но так, чтобы северный и южный полюсы чередовались (см. рис. 1). Между главными полюсами располагаются добавочные полюсы со своими обмотками. К статору крепятся подшипниковые щиты 7 (рис. 7).

Якорь 3 машины постоянного тока набирается из листовой стали (см. рис. 2) для уменьшения потерь мощности и от вихревых токов. Листы изолируются друг от друга. Якорь является подвижной (вращающейся) частью магнитопровода машины. В пазы якоря укладывается обмотка якоря, или рабочая обмотка 9.


Изменение во времени э.д.с катушек и обмотки кольцевого якоря

Рис. 6. Изменение во времени э.д.с катушек и обмотки кольцевого якоря

В настоящее время выпускаются машины с якорем и обмоткой барабанного типа. Рассмотренная ранее обмотка кольцевого якоря имеет недостаток, заключающийся в том, что э. д. с. индуцируется только в проводниках, расположенных на внешней поверхности якоря. Следовательно, активными являются только половина проводников. В обмотке барабанного якоря все проводники — активные, т. е. для создания той же э. д. с, что и в машине с кольцевым якорем, требуется почти в два раза меньше проводникового материала.

Расположенные в пазах проводники обмотки якоря соединяются между собой лобовыми частями витков. В каждом пазу обычно располагается несколько проводников. Проводники одного паза соединяются с проводниками другого паза, образуя последовательное соединение, называемое катушкой или секцией. Секции соединяются последовательно и образуют замкнутую цепь. Последовательность соединения должна быть такой, чтобы э. д. с. в проводниках, входящих в одну параллельную ветвь, имели одинаковое направление.

На рис. 8 показана простейшая обмотка якоря барабанного типа двухполюсной машины. Сплошными линиями показано соединение секций друг с другом со стороны коллектора, а пунктирными — лобовые соединения проводников с противоположной стороны. От точек соединения секций делаются отпайки к коллекторным пластинам. Направление э. д. с. в проводниках обмотки показано на рисунке: «+» — направление от читателя, «•» — направление на читателя.

Обмотка такого якоря имеет также две параллельные ветви: первая, образованная проводниками пазов 1, 6, 3, 8, вторая — проводниками пазов 4, 7, 2, 5. При вращении якоря сочетание пазов, проводники которых образуют параллельную ветвь, все время изменяется, но всегда параллельная ветвь образуется проводниками четырех пазов, занимающих постоянное положение в пространстве.


Устройство машины постоянного тока якоря барабанного типа

Рис. 7. Устройство машины постоянного тока якоря барабанного типа


Простейшая обмотка

Рис. 8. Простейшая обмотка

Выпускаемые заводами машины имеют десятки или сотни пазов по окружности барабанного якоря и число коллекторных пластин, равное числу секций обмотки якоря.

Коллектор 1 (см. рис. 7) состоит из медных изолированных друг от друга пластин, которые соединяют с точками соединения секций обмотки якоря, и служит для преобразования переменной э. д. с. в проводниках обмотки якоря в постоянную э. д. с. на щетках 2 генератора или преобразования постоянного тока, подводимого к щеткам двигателя из сети, в переменный ток в проводниках обмотки якоря двигателя. Коллектор вращается вместе с якорем.

При вращении якоря по коллектору скользят неподвижные щетки 2. Щетки бывают графитовые и медно-графитовые. Они крепятся в щеткодержателях, которые допускают поворот на некоторый угол. С якорем соединена крыльчатка 8 для вентиляции.

Классификация и параметры генераторов постоянного тока

В основу классификации генераторов постоянного тока положен вид источника питания обмотки возбуждения. Различают:

1. генераторы с независимым возбуждением, обмотка возбуждения которых питается от постороннего источника (аккумулятора или другого источника постоянного тока). У генераторов малой мощности (десятки ватт) основной магнитный поток может создаваться постоянными магнитами,

2. генераторы с самовозбуждением, обмотка возбуждения которых питается от самого генератора. По схеме соединения обмоток якоря и возбуждения по отношению к внешней цепи бывают: генераторы параллельного возбуждения, у которых обмотка возбуждения включена параллельно с обмоткой якоря (шунтовые генераторы), генераторы последовательного возбуждения, у которых эти обмотки включены последовательно (сериесные генераторы), генераторы смешанного возбуждения, у которых одна обмотка возбуждения включена параллельно обмотке якоря, а вторая — последовательно (компаундные генераторы).

Номинальный режим генератора постоянного тока определяется номинальной мощностью — мощностью, отдаваемой генератором приемнику, номинальным напряжением на зажимах обмотки якоря, номинальным током якоря, током возбуждения, номинальной частотой вращения якоря. Эти величины обычно указываются в паспорте генератора.