Обслуживание токоограничивающих и дугогасящих реакторов


Обслуживание токоограничивающих и дугогасящих реакторовТокоограничивающие реакторы
предназначены для ограничения токов КЗ и поддержания на шинах определенного уровня напряжения при повреждениях за реакторами. Реакторы
применяются на подстанциях в основном для сетей 6—10 кВ, реже на
напряжение 35 кВ. Реактор представляет собой обмотку без сердечника, его
индуктивное сопротивление не зависит от протекающего тока. Такая
индуктивность включается в каждую фазу трехфазной сети. Индуктивное
сопротивление реактора зависит от числа его витков …


Обслуживание токоограничивающих и дугогасящих реакторовТокоограничивающие реакторы
предназначены для ограничения токов КЗ и поддержания на шинах определенного уровня напряжения при повреждениях за реакторами.

Реакторы применяются на подстанциях в основном для сетей 6—10 кВ, реже на напряжение 35 кВ. Реактор представляет собой обмотку без сердечника, его индуктивное сопротивление не зависит от протекающего тока. Такая индуктивность включается в каждую фазу трехфазной сети. Индуктивное сопротивление реактора зависит от числа его витков, размеров, взаимного расположения фаз и расстояний между ними. Измеряется индуктивное сопротивление в омах.

В нормальных условиях при протекании через реактор тока нагрузки потеря напряжения в реакторе не превышает 1,5— 2 %. Однако при протекании тока КЗ падение напряжения на реакторе резко возрастает. При этом остаточное напряжение на шинах подстанции до реактора должно быть не менее 70 % номинального. Это необходимо для сохранения устойчивой работы остальных потребителей, присоединенных к шинам подстанции. Активное сопротивление реактора невелико, поэтому потери активной мощности в реакторе составляют 0,1—0,2 % мощности, проходящей через реактор в нормальном режиме.

По месту включения различают реакторы линейные и секционные, включаемые между секциями сборных шин. В свою очередь линейные реакторы могут быть индивидуальные (рис. 1, а) — для одной линии и групповые (рис. 1,б) — для нескольких линий. По конструкции различаются реакторы одинарные и сдвоенные (рис. 1, в).

Обмотки реакторов выполняются, как правило, из многожильного изолированного провода — медного или алюминиевого. На номинальные токи 630 А и более обмотка реактора состоит из нескольких параллельных ветвей. При изготовлении реактора обмотки наматывают на специальный каркас, а затем заливают бетоном, что предотвращает смещение витков под действием электродинамических сил при протекании токов КЗ. Бетонная часть реактора окрашивается во избежание проникновения влаги. Реакторы, устанавливаемые на открытом воздухе, подвергаются специальной пропитке.

Рис. 1. Схемы включения токоограничивающих реакторов: а — индивидуальный одинарный реактор для одной линии; б — групповой одинарный реактор; в — групповой сдвоенный реактор

Для изоляции реакторов различных фаз между собой и от заземленных конструкций их устанавливают на фарфоровые изоляторы.

Наряду с одинарными реакторами нашли применение сдвоенные реакторы. В отличие от одинарных реакторов сдвоенные реакторы имеют две обмотки (две ветви) на фазу. Обмотки имеют одно направление витков. Ветви реактора выполняются на одинаковые токи и имеют одинаковые индуктивности. К общему выводу присоединяется источник питания (чаще трансформатор), к выводам ветвей — нагрузка.

Между ветвями фазы реактора существует индуктивная связь, характеризуемая взаимной индуктивностью М. В нормальном режиме, когда в обеих ветвях протекают примерно равные токи, потеря напряжения в сдвоенном реакторе за счет взаимной индукции меньше, чем в обычном реакторе с таким же индуктивным сопротивлением. Это обстоятельство позволяет эффективно применять сдвоенный реактор в качестве группового.

При КЗ на одной из ветвей реактора ток в этой ветви становится значительно больше тока в другой неповрежденной ветви. При этом влияние взаимной индукции снижается, и эффект ограничения тока КЗ определяется в основном собственным индуктивным сопротивлением ветви реактора.

В процессе эксплуатации реакторов производят их осмотр. При осмотре обращают внимание на состояние контактов в местах присоединения шин к обмоткам реактора по цветам побежалости, индикаторным термопленкам, на состояние изоляции обмотки и наличие деформации витков, на степень запыленности и целость опорных изоляторов и их арматуры, на состояние бетона и лакового покрытия.

Увлажнение бетона и снижение его сопротивления особенно опасны при КЗ и перенапряжениях в сети из-за возможных перекрытий и разрушений обмоток реактора. В нормальных условиях эксплуатации сопротивление изоляции обмоток реактора относительно земли должно быть не менее 0,1 МОм. Проверяют исправность систем охлаждения (вентиляции) реакторов. При обнаружении неисправности вентиляции должны быть приняты меры к снижению нагрузки. Перегрузка реакторов не допускается.

Дугогасящие реакторы.

Одним из наиболее часто встречающихся повреждений в электрической сети является замыкание на землю токоведущих частей электроустановки. В сетях 6—35 кВ этот вид повреждений составляет не менее 75% всех повреждений. При замыкании; на землю одной из фаз (рис. 2) трехфазной электрической сети, работающей с изолированной нейтралью, напряжение поврежденной фазы С относительно земли становится равным нулю, а двух других фаз А и В возрастает в 1,73 раза (до линейного напряжения). Это можно наблюдать по вольтметрам контроля изоляции, включенным во вторичную обмотку трансформатора напряжения.

Рис. 2. Замыкание фаз на землю в трехфазной электрической сети с компенсацией емкостных токов: 1 — обмотка силового трансформатора; 2 — трансформатор напряжения; 3 — дугогасящий реактор; Н — реле напряжения

Ток поврежденной фазы С, протекающий через точку замыкания на землю, равен геометрической сумме токов фаз А и В:

 

где: Iс— ток замыкания на землю, А; Uф — фазное напряжение сети, В; =2f— угловая частота, с-1;