Обмотки статора и ротора

Обмотки статора и ротораВ статье рассказано про устройство обмоток статора и ротора
электрических машин переменного тока. Статор
с двенадцатью пазами, в каждый из которых уложено по одному проводнику,
схематично показан на рисунке. Соединения между проводниками,
уложенными в пазах, указаны только для одной из трех фаз; начала фаз А,
В, С обмотки обозначены С1, С2, С3; концы — С4, С5, С6. Части обмотки,
уложенные в пазах (активная часть обмотки), условно показаны в виде
стержней, а соединения между проводниками, находящимися в пазах …

В статье рассказано про устройство обмоток статора и ротора электрических машин переменного тока.

Обмотки статора и ротораСтатор с двенадцатью пазами, в каждый из которых уложено по одному проводнику, схематично показан на рис. 1, а. Соединения между проводниками, уложенными в пазах, указаны только для одной из трех фаз; начала фаз А, В, С обмотки обозначены С1, С2, С3; концы — С4, С5, С6. Части обмотки, уложенные в пазах (активная часть обмотки), условно показаны в виде стержней, а соединения между проводниками, находящимися в пазах (лобовые соединения),— сплошной линией.

Сердечник статора имеет вид полого цилиндра, представляющего собой пакет или ряд пакетов (разделенных вентиляционными каналами) из листов электротехнической стали. Для машин малой и средней мощности каждый лист штампуется в виде кольца с пазами вдоль внутренней окружности. На рис. 1,б дан лист статора с пазами одной из применяемых форм.

Рис. 1. Расположение обмотки в пазах статора и распределение токов в проводниках

Пусть мгновенное значение тока iA первой фазы в некоторый момент времени максимально и ток направлен от начала С1 фазы к ее концу С4. Будем считать такой ток положительным.

Определяя мгновенные токи в фазах как проекции вращающихся векторов на неподвижную ось ON (рис. 1, в), получим, что токи фаз В и С в данный момент времени отрицательны, т. е. направлены от концов фаз к началам.

Проследим по рис. 1, г образование вращающегося магнитного поля. В рассматриваемый момент времени ток фазы А направлен от ее начала к концу, т. е. если в проводниках 1 и 7 он идет от нас за плоскость чертежа, то в проводниках 4 и 10 он идет из-за плоскости чертежа к нам (см. рис. 1, а и г).

В фазе В ток в этот момент времени идет от конца фазы к ее началу. Соединив проводники второй фазы по образцу первой, можно получить, что ток фазы В проходит по проводникам 12, 9, 6, 3; при этом по проводникам 12 и 6 ток идет от нас за плоскость чертежа, а по проводникам 9 и 3 — к нам. Картину распределения токов в фазе С получим по образцу фазы В.

Направления токов даны на рис. 1,г; штриховыми линиями показаны магнитные линии поля, создаваемого токами статора; направления линий определены по правилу правого винта. Из рисунка видно, что проводники образуют четыре группы с одинаковыми направлениями тока и число полюсов 2р магнитной системы получается равным четырем. Участки статора, где магнитные линии выходят из него, представляют собой северные полюсы, а участки, где магнитные линии входят в статор, — южные полюсы. Дуга окружности статора, занятая одним полюсом, называется полюсным делением.

Магнитное поле в различных точках окружности статора различно. Картина распределения магнитного поля вдоль окружности статора повторяется периодически через каждое двойное полюсное деление 2; угол дуги 2 принимается за 360 электрических градусов. Так как вдоль окружности статора размещается р двойных полюсных делений, то 360 геометрических градусов равны 360р электрическим градусам, а один геометрический градус равен р электрическим градусам.

На рис. 1, г показаны магнитные линии для некоторого фиксированного момента времени. Если же рассмотреть картину магнитного поля для ряда последовательных моментов времени, можно убедиться в том, что поле вращается с постоянной скоростью.

Найдем скорость вращения поля. По истечении времени, равного половине периода переменного тока, направления всех токов изменяются на обратные, поэтому магнитные полюсы меняются местами, т. е. за половину периода магнитное поле поворачивается на часть оборота, равную 1/2. За один период переменного тока поле поворачивается на 1/ оборота. Тогда за одну секунду поле совершает 1/ оборотов, где f — частота переменного тока. Следовательно, скорость вращения магнитного поля статора, т. е. синхронная скорость, равна (в оборотах в минуту)

Число р пар полюсов может быть только целым, поэтому при частоте, например, 50 Гц синхронная скорость может равняться 3000; 1500; 1000 об/мин и т. д.

Рис. 2. Развернутая схема трехфазной однослойной обмотки

Характерной величиной, определяющей выполнение обмотки, является число пазов на полюс и фазу, т. е. число пазов, занимаемых обмоткой каждой фазы в пределах одного полюсного деления:

где z— число пазов статора.

Обмотка, приведенная на рис. 1, а, имеет следующие данные:

Даже для этой простейшей обмотки пространственный чертеж проводников и их соединений получается сложным, поэтому он обычно заменяется развернутой схемой, где проводники обмотки изображаются расположенными не на цилиндрической поверхности